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Abstract. A systematic application of the pseudo-SU(3) model for a sequence of rare earth nuclei demon-
strates that an overarching symmetry can be used to predict the onset of deformation as manifested through
low-lying collective bands. The results also show that it is possible to obtain a unified description of mem-
bers of the yrast band and the Kπ = 2+

1 and Kπ = 0+

2 excited bands by using a classification scheme based
on particle occupation numbers in the valence shells. The scheme utilizes an overarching Sp(4, R) sym-
plectic framework. The nuclei that are considered belong to the F0 = 0 and F0 = 1 symplectic multiplets
of the (50,82–82,126) shell.

PACS. 21.60.Fw Models based on group theory – 21.10.Re Collective levels – 27.70.+q 150 ≤ A ≤ 189

1 Introduction

The behavior of first excited Kπ = 0+2 , and Kπ = 2+

bands in deformed even-even nuclei is investigated empir-
ically in the rare-earth region, where the nuclei are ordered
in F -spin multiplets of a Sp(4, R) classification scheme [1].
The energy levels of the ground state (g.s.) J = 2+1 , first
excited Jπ = 0+

Kπ=0+

2

, Jπ = 2+
Kπ=2+

1

states of nuclei that

belong to the F0 = 0 = 1/2(N
π − Nν) multiplet (where

Nπ and Nν are the number of valence proton and neu-
tron pairs) are plotted in fig. 1. The energies of the same
set of levels for nuclei belonging to the F0 = 1 multi-
plet are plotted in fig. 2. Nuclei with F0 = 0 have equal
numbers of valence proton and neutron pairs. The others
with F0 = 1 vary by two pairs of protons. We want to
reproduce and interpret microscopically this complex and
varying behavior by an application of the algebraic shell
model with pseudo-SU(3) symmetry.

2 Model space and interactions

The building blocks of the model are the pseudo-SU(3)
proton and neutron states having pseudo spin zero,
which describe the even-even nucleus. The many-particle
states are built as pseudo-SU(3) coupled states with a
well-defined particle number and total angular momen-
tum [2,3].
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The Hamiltonian that is appropriate for the descrip-
tion of nuclei being considered includes spherical single-
particle terms for both protons and neutrons, Hσ

sp; proton
and neutron pairing terms, Hσ

P ; an isoscalar quadrupole-
quadrupole interaction, Q·Q; and four smaller “rotor-like”
terms that preserve the pseudo-SU(3) symmetry:

H = Hπ
sp +Hν

sp −Gπ H
π
P −Gν H

ν
P −

1

2
χ Q ·Q

+ a J2 + b K2
J + a3 C3 + as C2 , (1)

where C2 and C3 are the second and third order invariants
of SU(3), which are related to the axial and triaxial de-
formation of the nucleus. The single-particle energies are
calculated in the standard form with standard values for
coefficients Dπ[ν] and Cπ[ν] from [4]:

Hσ
sp =

∑

iσ

(

Cσliσ · siσ +Dσl
2
iσ

)

, (2)

where σ stands for protons (π) or neutrons (ν).
The calculations assumed fixed values [5] for pairing

(Gπ = 21/A, Gν = 17/A), as well as for the quadrupole-
quadrupole interaction strength (χ = 35A−5/3). The other
interaction strengths were varied to give a best fit to the
band heads of the first excited Kπ = 0+, Kπ = 2+ and
Kπ = 1+ bands, as well as the moment of inertia of the g.s.
band [6]. Explicitly, the term proportional to K2

J breaks
the SU(3) degeneracy of the different K bands, the J2

term represents a small correction to fine tune the moment
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Fig. 1. The experimental energy values [7] of the Jπ = 2+

1 ,
Jπ = 0+

Kπ=0
+

2

, and Jπ = 2+

K=2
+

1

states in a sequence of nuclei

for which the numbers of valence protons and neutrons are the
same (F0 = 0).

Fig. 2. The experimental energy values [7] of the Jπ = 2+

1 ,
Jπ = 0+

Kπ=0
+

2

, and Jπ = 2+

K=2
+

1

states in a sequence of nuclei

for which the difference in the numbers of valence proton and
neutron pairs is two (F0 = 1).

of inertia, and the last term, C2, is introduced to distin-
guish between SU(3) irreps with λ and µ both even from
the others with one or both odd, hence fine tuning the en-
ergy of the first excited Kπ = 1+ state. Within this frame-
work, the splitting and mixing of the pseudo-SU(3) irreps
are generated by the proton and neutron single-particle

terms (H
π/ν
sp ) and the pairing interactions. This mixing

plays an important role in the reproduction of the behav-
ior of the low-lying collective states in deformed nuclei [6].

3 Results and conclusions

The experimental and calculated energies of the Jπ= 2+g.s.,

Jπ = 0+
Kπ=0+

2

, and Jπ = 2+
Kπ=2+

1

states in the deformed

nuclei from the ones shown in figs. 1 and 2 are compared
in tables 1 and 2. We calculated also all the states with
J ≤ 8 within these three bands.
The calculated results are in very good agreement with

experiment [6,7]. The main reason for obtaining the posi-
tion of each collective band with respect to each other, as
well as of each level within the band is the specific con-
tent of the obtained SU(3) irreps into the collective states,
which is related to their deformations. For nuclei from ta-

Table 1. Energy values for the Jπ = 2+

1 , first excited Jπ =
0+

Kπ=0
+

2

and Jπ = 2+

Kπ=2
+

1

states for seven nuclei in the F0 = 0

multiplet. The experimental values [7] are given in parenthesis.
The numbers of valence proton and neutron pairs are given in
the second and third columns.

Nucleus Nπ Nν E(21) E(0+

K=0
+

2

) E(2+

Kπ=2
+

1

)

Th. (Exp.) Th. (Exp.) Th. (Exp.)
[MeV] [MeV] [MeV]

152Nd 5 5 0.082 (0.073) 1.14 (1.14) 1.31 (1.38)
156Sm 6 6 0.078 (0.076) 1.07 (1.07) 1.45 (1.47)
160Gd 7 7 0.085 (0.075) 1.33 (1.33) 0.99 (0.82)
164Dy 8 8 0.073 (0.073) 1.67 (1.66) 0.76 (0.76)
168Er 9 9 0.089 (0.080) 1.21 (1.22) 0.81 (0.82)
172Yb 10 10 0.081 (0.078) 1.04 (1.04) 1.49 (1.47)
176Hf 11 11 0.178 (0.088) 1.15 (1.15) 1.26

Table 2. Same as in table 1 for five nuclei with F0 = 1.

Nucleus Nπ Nν E(21) E(0+

K=0
+

2

) E(2+

Kπ=2
+

1

)

Th. (Exp.) Th. (Exp.) Th. (Exp.)
[MeV] [MeV] [MeV]

156Gd 7 5 0.094 (0.089) 1.06 (1.05) 1.14 (1.15)
160Dy 8 6 0.092 (0.087) 1.30 (1.28) 0.99 (0.97)
164Er 9 7 0.091 (0.091) 1.25 (1.25) 0.94 (0.86)
168Yb 10 8 0.088 (0.088) 1.16 (1.15) 0.98 (0.98)
172Hf 11 9 0.119 (0.095) 0.87 (0.87) 1.08 (1.07)

ble 1, in the middle of the shell, the ground and the γ
band belong to the same (λ, µ) with λ > µ. At the limits
of the deformed region the ground band states have oblate
deformation (λ < µ) and the Kπ = 0+2 and the K

π = 2+1
bands are mixed in the same SU(3) irrep [6]. The analysis
for nuclei from table 2 is under investigation.
The correct description of collective properties of first

excited Kπ = 0+2 , and K
π = 2+ states is a result of rep-

resentation mixing and state deformation induced by the
model Hamiltonian. This study shows that pseudo-spin
zero neutron and proton configurations with relatively
few pseudo-SU(3) irreps with largest C2 values suffices to
yield good agreement with known experimental energies.

References

1. S. Drenska, A. Georgieva, V. Gueorguiev, R. Roussev, P.
Raychev, Phys. Rev. C 52, 1853 (1995).

2. R.D. Ratna Raju, J.P. Draayer, K.T. Hecht, Nucl. Phys.
A 202, 433 (1973).

3. T. Beuschel, J.G. Hirsch, J.P. Draayer, Phys. Rev. C 61,
54307 (2000).

4. P. Ring, P. Schuck, The Nuclear Many-Body Problem

(Springer, Berlin, 1979).
5. G. Popa, J.G. Hirsch, J.P. Draayer, Phys. Rev. C 62,

064313 (2000).
6. G. Popa, A. Georgieva, J.P. Draayer, Phys. Rev. C 69,

064307 (2004).
7. R.B. Firestone, V.S. Shirley, Table of Isotopes, Vol. I,

8th edition and Vol. II (Wiley, New York, 1996).


	Introduction
	Model space and interactions
	Results and conclusions

